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Overview 
The objective of this project was to make an initial comparison of the quality controls (QC) developed by 

the participating national meteorological services (NMS) on two large, European-wide, third-party (3PD) 

data collections (i.e. WOW, Netatmo) from 2020. In the past years, KNMI researchers have developed 

three QC procedures to assess the quality of the measurements (i.e. temperature, rainfall, wind speed) 

provided by these networks. These QCs were originally devised to be applied to the Dutch scope and are 

implemented using Python or R. Currently, these QCs are applied in “research mode”, which implies that 

they are not yet available for operational purposes. The 3 available QC procedures were applied to the 

3PD datasets; therefore this document describes the process carried out and the obtained results.TThe 

work carried out required a substantial amount of time for data wrangling (i.e. cleaning, re-structuring 

datasets) given the big data nature of both datasets, which reduced the time for analysis. Nevertheless, 

we aimed at applying the QCs to the largest possible portion of the data available and report on that. The 

main hurdles and limitations encountered are mostly computational (e.g. insufficient memory or hard 

drive resources on local machines), but also scaling up the QC procedures from one country to the whole 

European extent (e.g. temporal cost of running the algorithms). The current results show that a high 

number of crowdsourced observations pass the QC procedures for three selected weather variables, 

which implies that these inexpensive devices conforming high-density networks are a promising 

complement to the official monitoring networks.   

In our view, 3PD collections are here to stay and expand well-consolidated workflows in meteorology and 

climate sciences. Thus, we think NMS should be well-prepared for these changes. Looking to the future, 

we think 3PD has the potential of becoming a game-changer when it comes to carrying out impact-based 

analysis and issuing high-resolution warnings and events, particularly in urban areas. Hence, we 

recommend that NMS increases their efforts in the evaluation of how 3PD can contribute to their 

operational services and, simultaneously, be ready for big new data engineering and fusion challenges 

(Garcia-Marti et al., 2022). 
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1 – Brief summary of the existing quality controls 
 

In the past years, KNMI researchers have developed or adapted QCs for three key weather variables: air 

temperature, rainfall, and wind speed. The QCs for air temperature and wind speed were developed using 

data from the WOW network (i.e. WOW for the Netherlands, WOW-NL), and the rainfall QC was 

developed using Netatmo data. Figure 1 shows an overview of the three “research mode” QCs.  shows an 

overview of the three “research mode” QCs.  

a) Air temperature 
The current air temperature QC is a modification of (Napoly et al., 2018) (i.e. researchers external to 

KNMI). The original research established four mandatory quality filters and three optional ones. During 

the implementation in Python of this QC for WOW-NL data, researchers thought it pertinent to modify 

this order, so that the air temperature time-series is not reconstructed, and the optional levels become 

mandatory. In this way, it is possible to apply the QC to time slices independently. The resulting QC applies 

intra-station checks (e.g. height-corrected temperature, outlier detection), hence does not need large 

reference datasets. At the end, each individual observation is labeled with a quality flag (i.e. M0 is the 

lowest quality level, M4 is the highest).   

b) Wind speed 
The wind speed QC is described in (Chen et al., 2021) and the R source code is available in Github (Chen 

et al., 2021b). This QC is an interval-based filter that operates with time intervals of 10 minutes. It contains 

a time standardization function that maps the timestamp of each observation to a 10-min interval, if the 

input datasets are not aggregated to this temporal resolution. The QC consists of four stages in which 

different filters are applied. These stages contain intra-station (e.g. range, step, and persistence tests) and 

inter-station (e.g. comparison with neighbors) filters aimed at quantifying how much a time interval of 

each station deviates from the neighbors and from previous measurements. In addition, this QC uses 

KNMI data as reference to apply a bias correction factor. As a result, each 10-min time interval has flags 

for each QC test and is labeled as “1” or “0”, depending on whether it passes all the stages. In this work, 

only the intra-station tests were applied.  

c) Rainfall 
The rainfall QC is described in de Vos et al. (2019). The original R code applied inter-station filters to assess 

whether an observation deviates from its neighbors, and a bias correction factor using local climate data 

as default, but able to dynamically update employing the 3PD data. This QC was later ported to Python 

and transformed into a radar version, which depends on unadjusted KNMI radar data (MSc thesis: van 

Andel, 2021), but in this project we are using the original version. This QC operates at the time-series level, 

that is, checks each observation belonging to a time-series to verify whether it is good enough for 

subsequent processing and applications. 

 



 

Figure 1. An overview of the three quality controls developed or adapted  

by KNMI researchers for third-party data. 

 

2 – Data processing 
 

The European-wide WOW and Netatmo collections for 2020 were downloaded via FTP from the 

EUMETNET Sandbox available in the CEDA repository (https://data.ceda.ac.uk/badc/eumetnet-sandbox). 

Both collections were stored in a workstation in its original form. In collaboration with Met Norway, a 

Netatmo rain gauge dataset from the period September 2019 through August 2020 was obtained, which 

largely overlaps with the Sandbox dataset. In addition, KNMI developed a new dataset EUropean RADar 

CLIMatology within the internal EURADCLIM project, which is a publicly available climatological dataset 

of 1-h and 24-h precipitation accumulations at a 2-km grid, which is used as a reference for the rain gauge 

data (Overeem et al., 2022). EURADCLIM is a combination of EUMETNET OPERA radar precipitation data 

and European Climate Assessment and Dataset (ECA&D) daily rain gauge data. Within the project 

EURADCLIM, an exploratory analysis was performed on the potential of crowdsourced Netatmo rain 

gauge data for improving OPERA radar precipitation accumulations. Here, only the quality of the Netatmo 

gauge data is studied by comparing to the EURADCLIM dataset.. EURADCLIM is a combination of 

EUMETNET OPERA radar precipitation data and European Climate Assessment and Dataset (ECA&D) daily 

rain gauge data. Within the project EURADCLIM, an exploratory analysis was performed on the potential 

of crowdsourced Netatmo rain gauge data for improving OPERA radar precipitation accumulations. Here, 

only the quality of the Netatmo gauge data is studied by comparing to the EURADCLIM dataset. 

https://data.ceda.ac.uk/badc/eumetnet-sandbox


 

2.1 – Data extraction 
WOW observations are grouped on a monthly basis and stored at a European scale, which implies there 

are 12 large CSV files (i.e. roughly 4 GB each) for the processing and 12 MD5 checksum files. The column 

names of these files is different than the ones downloaded by KNMI from the WOW repositories, hence, 

it was necessary to map one these new column names to well-known ones to pass the QCs. 

Netatmo has a different structure, in which data is not organized following the spatial and/or temporal 

dimensions but following a station-based organization. Due to this and the large number of stations in 

this network, the data extraction yields approximately 6 million files. On the first level, data is organized 

in country folders, and inside each country folder there are 12 subfolders, one per month. Each of these 

subfolders contains a variable number of files. The files are organized in the following way: each station 

has associated a XXXX.metadata.json file, containing a description of the station. Then, based on the 

type of instrument monitoring the weather it will have one or more CSV files associated to this metadata 

file. Thus, a station monitoring all variables would also provide XXXX.outdoor.historic.csv, 

XXXX.pressure.historic.csv, XXXX.rain.historic.csv, and XXXX.wind.historic.csv. 

Each of these smaller CSV files contains the time-series for the whole month. This organization creates a 

vast data structure depending on the size of Netatmo data in each country. For example, for the 

Netherlands (~2,500 stations) in November 2020, this network reported observations packed in 9,088 

files. However, for France (~25,000 stations) in November 2020, the observations produced were grouped 

in 71,900 files. For the Netatmo rain gauge data as obtained in the project EURADCLIM, the structure is 

similar, except that data from all countries are in one folder per month (~10 GB per month) and only the 

rain historic files are made available.  

After this step, both data collections were iterated to create a list of the available stations for each 

network, regardless of the country where they are placed. In total, there are 5,828 stations in WOW and 

34,062 stations in the Netatmo collection. Note that for Netatmo, not all stations report all weather 

parameters. Once these lists are prepared, it is possible to create basic visualizations to better explore the 

distribution of stations across Europe. Figure 2 shows a histogram of the number of stations per country 

for each of the two networks. Figure 3 shows the same histogram but turned into a map. Note that to 

ease the visualization between the two networks, the color scales span across different ranges.  

 

 



 

Figure 2. Histogram showing the number of stations per country  

and network (WOW, above; Netatmo; below) 

 

 



 

Figure 3. Maps showing the number of stations per country  

and network (WOW, above; Netatmo, below) 

 

 

 

 



2.2 – Data aggregation, organization and compacting 
 

The available QCs for 3PD operate at different temporal resolutions. The temperature QC can work with 

observations at the timestamp resolution, but the wind speed QC operates at 10-min intervals. The type 

of temporal aggregation that QCs need at the input is a good reason to aggregate data, but not the only 

one. Given the sheer number of files in the Netatmo collection, it seemed appropriate to combine the 

separate files per variable, so that there is only one “metadata” file and one “data” file (instead of up to 

4). Hence, the raw data collections were re-organized, aggregated and/or compacted to facilitate the 

process of applying the quality controls.  

For this purpose, the different Python workflows created in this project apply these operations at various 

stages. For example, a dedicated script aggregates the observations to an X-min interval that can be later 

used to write smaller CSV files easier to process by the QCs. Hence, WOW data was re-organized to a 10-

min resolution (but not averaged on the time-interval). We applied this process to Netatmo as well, but 

this collection needed compacting too. Hence, Netatmo per-country file structure was traversed to 

aggregate this collection to 5-min and 10-min, so that if any station reports more than one observation in 

this time interval it is averaged. Also, all partial observational files from Netatmo we grouped, so that each 

station only has one “metadata” and one “data” file.  

These type of operations on large datasets tend to have a high temporal cost. The original workflows 

described in this sub section were originally developed for WOW, but the size of the Netatmo collection, 

prompted us to use basic Python threading to speed up these data wrangling operations (i.e. in a local 

high-end laptop computer). In this way, the wrangling operations for Netatmo decrease from 18h to 13h, 

which suggest that the availability of larger machines or cloud infrastructures could prove relevant to 

handle such data collections. Both collections are stored in CSV format.  

For the EURADCLIM’s Netatmo rain gauge dataset, data are preprocessed per month to construct a 

Netatmo rain gauge dataset at regular 5-min intervals with one data and metadata file per month in binary 

format (R Object). This is based on openly available code written in language R 

(https://github.com/LottedeVos/PWSQC), developed by de Vos et al. (2019), with some modifications to 

work with the data on an European level, and not including any computations with the reference dataset. 

The aggregation and compacting takes approximately 90 hours for the 1-year Europe-wide dataset when 

run on one single core of a high-end desktop computer. The locations of Netatmo rain gauges are shown 

in Figure 4, displaying a generally large network density. Some countries have a much lower network 

density, but this density will often still exceed that of official gauge networks from which data are 

available, such as those in the European Climate Assessment and Dataset (https://www.ecad.eu/). In 

general, the network density is expected to be ten times as large as that of the gauges available in ECA&D. 

https://github.com/LottedeVos/PWSQC
https://www.ecad.eu/


 

Figure 4: Locations of Netatmo rain gauges over Europe over the period  

September 2019 through August 2020, before applying any quality control. 

 

2.3 – Preparing data stores and reference data for quality controls 
 

The application of QCs on WOW and Netatmo requires assembling reference datasets and/or creating 

databases to store the quality flags. This section describes the requirements to apply each QC to the data 

collections. 

 

a) Temperature 
The air temperature QC relies on a Postgres database to, first, store the raw observations in separate 

tables per country and, second, to store the results of the QC in a matching table. This data organization 

was chosen (back in 2019) keeping in mind that once this QC enters the KNMI Operations pipeline, it is 

more likely that the observations will be stored in a database server (possibly in KNMI’s digital 

infrastructure in the cloud), hence feeding other services from there. Thus, in this project we decided to 

keep the original principle for the air temperature QC with European-wide 3PD collections.  

The initial database model was extended, to include other countries than the Netherlands. Python scripts 

and SQL queries were created to create an empty structure capable of holding the observations. This 

database organization is also convenient to quickly retrieve slices of data and represent observations in 

different visualizations. Therefore, the “eumetnet_wow” database contains 34 tables to store the 

observations of each country and 34 more to store the (partial) results of the QC. This process was adapted 



(e.g. new SQL queries, field names, testing) and repeated for the “eumetnet_netatmo” database, which 

contains 32 tables for the observations and 32 for the QC results. The WOW database was populated with 

the raw observations and the Netatmo database with the observations aggregated at 5-min. Note that 

this database is in a local laptop and was not accessible to the rest of the researchers for the team.  

Regarding additional reference data collections, the air temperature QC does not need much to run. One 

of the procedures of the original QC (Napoly et al., 2018) is using an elevation file to correct for the 

atmospheric lapse rate. In this project, we have used GTOPO30 global elevation map from the USGS. The 

QC also requires counting the number of observations that a station has reported in each day and month. 

This is necessary to identify outliers in the data. For this purpose, Python scripts using SQL queries were 

developed, so that two boards (in CSV) are written containing these counts and made available before the 

execution of the QC. Note that this is a temporally costly operation that takes several hours to complete. 

b) Wind speed 
The wind speed QC uses the 10-min aggregation CSV files described in Section 2.2. The wind QC was 

applied to both WOW and Netatmo data. The 10-min European-wide files have the same format as the 

ones used in (Chen et al., 2021). Out of the three stages of the original QC (i.e. within-station, between-

station and bias correction), we performed the within-station tests described in this publication. The 

within-station stage consists of the following steps: 1) Isolation test: remove stations with insufficient 

observations; 2) Range test: flag implausible wind speeds (e.g. greater than a category 4 hurricane); 3) 

Step test: flag wind speeds where there is a large jump (i.e. using KNMI data for the Netherlands as 

reference); 4) Persistence test for zero and non-zero values: flag wind speeds where the variability is too 

small. Using these within-station filters, no additional reference data is needed, but note that the 

application of the entire QC would require European climatology data.  

c) Rainfall 

The rainfall QC (de Vos et al., 2019; https://github.com/LottedeVos/PWSQC) uses the 5-min aggregated 

rain values in binary R Object files. To run the rainfall QC it is necessary to accumulate these 5-min files 

into 1-hour accumulations. This process will be carried out if the availability of the 5-min files is at least 

83.3%. Also, only Netatmo gauge accumulations larger than 0.25 mm in 1 hour are kept. Moreover, only 

Netatmo gauge accumulations are selected when an OPERA-based 1-hour radar precipitationi dataset has 

more than 0.25mm at the respective gauge location. In this way, erroneous zeros or low gauge values are 

effectively not evaluated. The selected Netatmo 1-h gauge accumulations are compared to those from 

EURADCLIM (Overeem et al., 2022), a merged OPERA radar and ECA&D rain gauge product, which is used 

for an independent verification 

To speed up the computations of the rainfall QC, it is possible to create additional auxiliary files. For each 

Netatmo rain gauge a neighborhood list with the 20 closest neighbouring istation within a 10 km radius is 

created. The idea behind this step is to reduce computational time in case the QC is temporally costly. For 

example, running one process per month on a high-end desktop computer with 8 cores takes 12h for the 

1-year European-wide dataset.  

 

 

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&ved=2ahUKEwiCp5DN4NH7AhWXi_0HHaDjBe8QFnoECA8QAQ&url=https%3A%2F%2Fwww.usgs.gov%2Fcenters%2Feros%2Fscience%2Fusgs-eros-archive-digital-elevation-global-30-arc-second-elevation-gtopo30&usg=AOvVaw0vXkRytJSheCSoSGhYRKD6
https://github.com/LottedeVos/PWSQC


2.4 - Comparing EUMETNET’s Netatmo and EURADCLIM project Netatmo raw datasets 
 

In section 2.1 we briefly described a new dataset developed by KNMI researchers: EURADCLIM. During 

this project's development, a Netatmo dataset spanning Sep 2019 to Aug 2020 was made available. To 

speed up the production of insights, we decided to incorporate the results of EURADCLIM into this Study 

A1.05, since the QC of Netatmo data was an important part of the project. However, we prepared a couple 

of visualizations to assess whether both Netatmo collections are similar. 

For this purpose, we developed Python scripts traversing the two Netatmo file structures and counting 

the number of encountered stations and the associated observations during the two overlapping periods. 

With these count data, we prepared two heatmap visualizations intended to show how similar both 

collections are. Figure 5 (top) shows the number of stations per month in both datasets, whereas Figure 

5 (bottom) shows the total number of observations per month reported by both Netatmos. The heatmaps 

resemble each other but are not the same. This was in part expected, since both Netatmos only partially 

overlap. However, both panels show that the heatmaps do not become the same for the overlapping 

period either. This might be an important detail to keep in mind, since ensuring that researchers across 

organizations receive the same datasets in different moments of time seems important for the 

reproducibility of future experiments using 3PD. For this project's purpose, we believe both datasets are 

similar enough to include the results of EURADCLIM in this EUMETNET Study A1.05. Hence, in this 

document, the results for the rainfall QC come from EURADCLIM’s Netatmo.  

 

 

 

 

 

 

 

 

 

  



 

 
Figure 5. Heat maps showing the number of monthly contributing stations (top) and the number of 

monthly observations (bottom) for the two available Netatmos (ie. EUMETNET and EURADCLIM) 

 

 

 

 

 



3 – Applying quality controls: description of experiments and results obtained 
 

After the data processing described in Section 2, we applied the available QCs to the largest possibly 

portion of data. Table 1 summarizes these efforts.  

 

 Variable WOW Netatmo Comments 

1 Air temperature 
Yes 

(3.1) 
Yes 

(3.2) 

WOW: applied to whole data collection 
Netatmo: Disk space exceeded, QC only 
available for 4 countries 

2 Wind speed 
Yes 

(3.3) 
Yes 

WOW/Netatmo: Applied to 12K out of 28K 
stations (as per 30/11/22) 

3 Rainfall No 
Yes 

(3.4) 

Netatmo: EURADCLIM project, excessive 
memory and computational usage required 
simplifying QC 

Table 1. Summary of the QCs applied in this project 

 

3.1 – WOW + Temperature QC 
 

The application of the air temperature QC to WOW data was tackled in two phases to identify potential 

problems. First, Python scripts were developed for Belgium, to adapt and test the original scripts for a 

region that is not the Netherlands and resolve minor problems. Second, it was extended to all countries 

found in the dataset. The air temperature QC is structured in two parts: mechanistic filters and statistical 

filters. The mechanistic filters first check whether a station is one of the invalid ones, then checks whether 

the metadata are incorrect (at this point is verifying whether lat/lon are the same), and then checks 

whether the daily/monthly coverage is sufficient, following the heuristics from the paper. As seen this 

party relies on the reference tables created in section 2.3a above. The statistical checks first correct for 

the temperature lapse rate using the elevation map described above. Then, the Z-score of the 

observations is computed and checked with a robust Qn estimator that would determine whether an 

observation is an outlier. Finally, a Pearson correlation coefficient is computed between the median of 

the inspected station on that hour and the median of the other stations reporting observations in that 

hour.  

After this step, a quality flag is calculated based on a simple if-else structure and attributed to an 

observation. Once a slice of time is QC’d, the quality flags are inserted back into the database, as described 

in section 2.3a. The quality flags are: M0 (ie. insufficient metadata), M1 (ie. Outliers), M2 (ie. Insufficient 

daily/monthly coverage), M3 (ie. Insufficient correlation), M4 (ie. OK). Hence, observations reaching level 

M4 are the ones with the highest quality, according to this QC.  

Figure 6 shows a summary of the results of the air temperature QC applied to the whole European extent. 

The histograms (above) show each country placed along the X-axis, whereas the Y-axis shows the 

frequency of the quality labels (ie. note that the scale is different between plot rows). The main highlights 

of the figure is that the WOW network does not seem to have too many problems with metadata, outliers, 



or coverage, since their associated color bars are small. Some countries present uncorrelated values, but 

in general this percentage is low too. The plot on the right shows the same information in tabular form. 

The column “percent” shows the percentage of observations per country that reach level M4. As seen, 

half of the countries provided at least 70% of the observations with the M4 quality level. 

 

 
Figure 6. Summary per country of the air 
temperature QC applied to each country of the 
dataset. The histograms (above) show each country 
along the X-axis and the number of quality flags (note 
the change of scale between plot rows) in the Y-axis. 
Each color in the legend represents the quality levels 
that the observations reach. Level M4 (ie. In purple) 
is the one grouping the ones with the highest quality. 
The right plot shows the same information but in 
tabular form. The last column “percent” shows the 
percentage of observations per country that reached 
the highest quality. As seen, half of the countries 
provided at least 70% of the observations with the 
M4 quality level.  

 
 

 



3.2 – Netatmo + Temperature QC 
 

The application of the air temperature QC to Netatmo data was tackled as described in section 3.1, first 

for Belgium, then extended to all countries in the dataset. The QC code is also the same as the one used 

in the previous section.  

While applying the QC to the Netatmo dataset we found out a new serious limitation for this project: the 

local laptop holding the database ran out of disk space. A closer inspection revealed that the Netatmo 

database occupied 530GB of disk space, thus consuming all the free space in the hard drive of the local 

laptop. Hence, despite preparing all workflows to apply the QC to Netatmo data, we could only apply it to 

four selected countries: the Netherlands, Czech Republic, Belgium, and Poland.  

Figure 7 shows a summary of the QC labels produced for the four selected countries. As seen (above), the 

QC identifies a substantial number of observations flagged as either outlier (ie. M1) or with insufficient 

daily/monthly coverage (ie. M2). The table (below) shows the percentage of observations per country 

reaching level M4. In here, the country with the highest number of M4 observations is the Netherlands 

(60%) followed by the Czech Republic (58%). These results are quite different than the use case with WOW 

data, which might suggest that Netatmo stations acquire observations with less quality. Nevertheless, 

since we could only apply this to four countries, the results are not complete enough yet to make a sound 

conclusion.  

Figure 7. Summary per country of 
the air temperature QC applied 
to four selected countries in the 
Netatmo dataset (I.e. the NL, CZ, 
BE, PL). The histograms (top) 
show each country along the  X-
axis and the number of quality 
flags in the Y-axis. Each color in 
the legend represents the quality 
levels that the observations 
reach. Level M4 (purple) is the 
one grouping the ones with the 
highest quality. The bottom plot 
shows the same information but 
in tabular form. The last column 
“percent” shows the percentage 
of observations per country that 
reached the highest quality. As 
seen, the Netherlands is the 
country producing the most 
observations with the highest 
quality level, with a total of 60%, 
followed by the Czech Republic 
with 58%. 

 

 

 

 



We put together the results obtained in Section 3.1 and 3.2 for the four common countries with quality 

labels. Figure 8 contains four sub panels (one per country) comparing the histograms obtained after 

applying the QC to WOW and Netatmo. The sub panels show a similar pattern: the number of level M4 

observations in the Netatmo network is higher than in WOW (except for the Netherlands), but the 

Netatmo network seems more prone to generate outliers (ie. M1) or observations with insufficient 

daily/monthly coverage (ie. M2) than WOW. More investigation is required to find out whether this 

pattern also occurs for more European countries.  

 

 

Figure 8. Comparison of air temperature quality labels for WOW and Netatmo for four selected countries. 

The current results might suggest that the WOW network produces air temperature observations with a 

higher quality than Netatmo, but more research is required.  

 

 

3.3 – WOW + Wind speed QC 
 

The within-station wind quality filters were applied to the WOW and Netatmo collections, but in this sub 

section only results with WOW are shown. Out of all the available stations in both datasets, 37,422 provide 

wind speed measurements. We applied the isolation test and 28,399 stations were sent to the step, range, 

and persistence filters. After this process, roughly 14,000 stations have been QC’d with the within-station 

tests (i.e. as per 30/11/22). We discard stations that have too many flags (>95% of the data), which leaves 

a final set of roughly 7000 stations. We show below some examples of the effects of the quality control in 

a few stations from Greece and Italy. 

Figure 9 shows a station located in Greece (i.e. EL_646). The central panel depicts the original time-series 

and the colored dots show observations in the time-series that are suspicious of not having a good quality. 

In this case, some of them report >1500km/h, and some others a too steep increase in the wind speed. In 

the right panel, these observations have been removed, and the reader can see that the time-series looks 

better now. A similar pattern is found in Figure 10, in which a WOW station located in Italy has produced 



abnormal wind speed values. However after the QC becomes more credible.  Figure 11 shows another 

station located in Greece (i.e. EL_648). As seen, in here the QC does not label too many observations as 

suspicious, so that when these are removed (right panel) the time-series is practically the same as before. 

This could be an example of a “good station”, at least concerning the within-station filters.  

 

 

Figure 9. A WOW station (EL_646) located in Greece before the QC (center) and after the QC (right) 

 

 

 

 

 



 

Figure 10. A WOW station (IT_921) located in Italy before the QC (center) and after the QC (right) 

 

 

Figure 11. A WOW station (EL_646) located in Greece before the QC (center) and after the QC (right) 

 

 

 

 



3.4 – Netatmo + Rainfall QC 
 

We applied the faulty zeroes and high influx filters from the original rainfall QC described in (de Vos et al., 

2019) to the 5-min Netatmo data (with some technical modifications). With this setup, running one 

process per month on a high-end desktop computer with 8 cores takes 1.5 hours for the 1-year Europe-

wide dataset. 

Figure 12 provides scatter density plots of Netatmo 1-h rainfall accumulations against those from the 

EURADCLIM dataset over the 1-year European-wide dataset. In total, more than 28 million 1-h Netatmo 

accumulations are compared to EURADCLIM accumulations. The spread is quite large, which is partly due 

to representativeness errors. EURADCLIM is based on radar data with 4 km2 grid cells, whereas the 

measurement volume of a Netatmo gauge is only a fraction of the grid cell size. Moreover, radars measure 

aloft leading to timing differences and the possibility that precipitation actually reaches the Earth’s surface 

at another grid cell. Apparent are the group of large Netatmo accumulations for low EURADCLIM values. 

The metrics in the graphs indicate the relative bias in the mean, which is quite close to 0, the coefficient 

of variation of the residuals (CV), a measure of spread, and the coefficient of determination (squared 

Pearson correlation coefficient). Note, however, that the relative bias varies in space (not shown), will 

likely also vary in time and depend on the applied thresholds. Moreover, the group of large Netatmo 

accumulations may conceal underestimations. Application of a dynamically updated bias correction factor 

per station (de Vos et al., 2019) may help to address this, but may also require more development for this 

large dataset containing many different weather conditions. A residual is defined as the Netatmo 

accumulation minus the EURADCLIM accumulation. Application of the quality control leads to a much 

lower value for CV and the coefficient of determination also improves from 0.09 to 0.30. Some initial 

results, not shown, where comparisons with unadjusted OPERA radar data are used to remove suspicious 

Netatmo values, further improve these metrics (CV of 1.05 and coefficient of determination of 0.38), and 

would remove the group of large Netatmo accumulations Drawback of that approach is its dependence 

on OPERA radar data. 

 

 

Figure 12.  Scatter density plots of hourly Netatmo rain gauge accumulations against EURADCLIM gauge-

adjusted radar accumulations over the period September 2019 – August 2020. Results are shown for the 



Netatmo dataset without quality control (left) and for a Netatmo dataset which has undergone the high 

influx & faulty zeroes filter. In both plots, only values are shown when both the Netatmo gauge and the 

unadjusted OPERA radar dataset (not EURADCLIM) are larger than 0.25 mm. 

 

4 - Challenges encountered during the process 
 

The challenges encountered during this project have been predominantly within the (big) data 

engineering category. The original QCs were devised for the Netherlands, which is small (but data rich) 

country. However, at the time of scaling up the original QCs to a larger extent, we started bumping into 

problems that required shifting the original goals of this project. Perhaps these problems could be 

mitigated or even non-existent had we used high-performance computers or a cloud-based infrastructure, 

but these were not available resources in the context of this project. Hence, assuming that the processing 

and application of the QCs is done in normal to high-end laptop or desktop computers, these are the most 

limiting challenges: 

1. Insufficient hard drive resources: The application of the air temperature QC to Netatmo data 

revealed that the local database (laptop computer) had exhausted the free space in the hard drive 

(i.e. used at least 530GB of space), which hampered the application of the QC beyond the selected 

4 countries.  

 

2. Insufficient RAM memory: The application of the rainfall QC has a couple of demanding steps, 

specially during the bias correction and the station outlier filter. The processing would take over 

300 hours due to memory limitations (64GB). Since this processing step has a spin-up time of at 

least two weeks, applying it per month limits its added value. This would imply that the processing 

is effectively not applied to the first two weeks of each month. Ideally, data would be processed 

over several months or even the entire year, but this is currently not possible on a desktop 

computer due to memory limitations.  

 

3. Reproducibility: Having two Netatmo collections available (i.e. EUMETNET and EURADCLIM 

project) we realized that these collections do not seem to have the same number of stations and 

therefore the number of observations. We acknowledge that exhaustive tests have not been 

conducted, but in case that other organizations face a similar situation, this might pose questions 

when it comes to the reproducibility and transferability of the scientific results.  

 

Other minor issues found during the development of the project are: 

1. Data types: Some WOW stations report the wind speed parameter as  a string. The casting to 

float64 fails, since the string contains a poorly formatted float (e.g. “36,612.3” m/s). This required 

continuous patching of the original Python scripts for QC. 

 

2. Headers name: The received WOW collection has header names different than the ones KNMI 

researchers have been using since 2019.  



 

3. Implausible values: During the processing or QC we encountered physically implausible values for 

some measurements (e.g. negative rainfall, wind speeds higher than 60,000 km/h). 

 

4. Consistency of the measurements: Wind speeds are binned for some stations and for parts of 

some stations. 

 

5 – Recommendations for the future 
 

Our recommendations for the future usage of 3PD by other organizations aims at solving these (big) data 

engineering problems. For example, teams of software developers, data architects and data engineers 

could help at organizing these datasets in a cloud-based environment, so that researchers do not need to 

dedicate substantial amounts of time to the data processing phase. Also, the deployment of these large 

3PD collections in the cloud would help researchers to have available larger machines with increased 

computational resources (e.g. memory, disk space, faster CPUs) and hand, thus allowing them to focus in 

the analytical part. In addition, such system would enhance the transparency and would make easier to 

share results at different stages of the development of projects. For a more complete description of our 

view on the future usage of 3PD at NMS, we refer the reader to Section 5 of our recent paper (Garcia-

Marti et al., 2022). 

Optimizing code and perhaps translating it to a more efficient programming language may provide a 

solution. The use of auxiliary data, such as OPERA radar data, could also help to improve quality control 

on top of the already applied faulty zeroes & high influx filter. And the radar version of the quality by de 

Vos et al. (2019), as developed by van Andel (2021), could be modified to work with the European Netatmo 

and radar data. Note that van Andel (2021) found that for dense Netatmo networks, the quality control 

by de Vos et al. (2019) gives better results than the radar-based version.  

Finally, connect to the (outcome of the) COST action OpenSense where different 3PD QC and retrieval 

algorithms will be tested on large benchmark datasets in collaboration with different institutes 

(https://opensenseaction.eu/) for, e.g., precipitation from personal weather stations (PWS), such as those 

from Netatmo. OpenSense also includes the development of standardized data formats for, e.g., PWS 

data. 

 

 

 

 

 

 

 

https://opensenseaction.eu/
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